UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Nanostrukturierte Zellkomponenten für reversible Energiespeicher mit verbesserter Lebensdauer (Alterung von Superkondensatoren)

Prof. Dr. Peter Kurzweil

Technische Hochschule Amberg-Weiden (OTH) Fakultät MBUT, Labor für Elektrochemie

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Aufgabenstellung

Ursachen der schleichenden Degradation von Doppelschichtkondensatoren und Einblicke in die Alterungsmechanismen

- Ergebnisse / Anwendungen
- 1. Nanomaterialien (Carbide Derived Kohlenstoff, Grafitoxid)
- 2. Verlässliche Bestimmung der Kapazität und Kriterien für die Fehleranalyse
- 3. Langzeittest bei hohen Temperaturen und unter Spannungsüberlast
- 4. Stabilität des Elektrolytsystems
- 5. Chemische Analytik von Alterungsprodukten

P. Kurzweil, Journal of Power Sources 176 (2008) 555–567.

1.1 Elektrodenmaterial: Pseudokapazität

UMWELTnanoTECH

1.1 Elektrodenmaterialien

1.2 Carbide-Derived Carbon: Ti-CCD

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Positiver Einfluss von nanoporösen, kleinen Partikeln.

1.2 Carbide-Derived Carbon: Ti-CCD

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Positiver Einfluss von 5 % Leitruß-Additiv im CDC-Aktivmaterial.

1.2 Carbide-Derived Carbon: Ti-CCD

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Schädlicher Einfluss eines zu großen Binderanteils.

UMWELTnanoTECH

1.2 Carbide-Derived Kohlenstoff: Alterung des Binders Anwendungen der Nanotechnologie

1.3 Grafitoxid: eine Modellsubstanz

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Positive Einfluss des Heißpressens und einer leitfähigen Grundbeschichtung.

1.3 Grafitoxid: eine Modellsubstanz

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Negativer Einfluss eine oxidierten Kohlenstoffoberfläche

1.3 Elektrodenmaterial: Elektrolytische Formierung

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Grafitoxid und die anodische Formierung der Kohlenstoffoberfläche sind schädlich.

2.1 Langzeittest: Fehlerdiagnose

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

P. Kurzweil et al., ChemElectroChem 2 (2015) 6-13 und 150-159.

2.1 Langzeittest: Fehlerdiagnose

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

P. Kurzweil et al., ChemElectroChem 2 (2015) 6-13 und 150-159.

Superkondensatoren 2.1 Langzeittest: Fehlerdiagnose

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

⊖ Kathode

flexibel, Anhaftung von Separator

Anode
Steif-unelastisch, brüchig

Separator

2.7 V, 10 F

Trocken, brüchig, braun verfärbt, Elektrodenrückstände

Elektrolyt noch feucht, dunkelbraun verfärbt

Zersetzung des Elektrolyten und Zerstörung der positiven Elektrode

2.2 Verlässliche Kapazitätsbestimmung

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Die Standard-IEC-Methode versagt bei schadhaften Bauteilen.

UMWELTnanoTECH

2.2 Langzeittest: schleichende Alterung

UMWELTnanoTECH

3.1 Langzeittest: thermische Last, $60 \rightarrow 120$ °C, 144 h

UMWELT nano TECH

3.2 Langzeittest: elektrochem. Alterung: 3.7 V, 7 A, 30 s Anv

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Beschleunigter Lebensdauertest: Überlast ersetzt mehrjähriges Zyklisieren
 Frühindikator für Ausfall: abrupter Anstieg von ESR und Zeitkonstante R(t)·C(t)/(R₀C₀)

Hohe Temperatur und Überspannung verursachen das gleiche Alterungsbild.
 Degradation des Elektrodenmaterials führt zu falscher Lebensdauerschätzung

4.1 Elektrolyte

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Elektrolyt	Löse- mittel	Leitsalz	ionische Flüssigkeit	Additiv	Kapazität (F g ⁻¹)	Leitfähigkeit (mS cm ⁻¹⁾	Viskosität (mPa s)	Spannungs- fenster (V)		
wässrig	—	H ₂ SO ₄				826			< 1,5	
		KOH 6 M				540				
organisch	РС	Pyr ₁₄ BF ₄ 1.9 M			85	10	6,3	5,5	3,2	
	РС	Et ₄ NBF ₄ 1.0 M			96	14	2,5	4,9	2,7	
	Acetonitril	Et ₄ NBF ₄ 1.0 M			98	58	0,6	4,0	2,7	
	РС	TEAODFB 1.6 M			21	14			2,5	
	GBL	Et ₄ NBF ₄ 1.0 M				18				
		LiPF ₆		Acetamid	87	< 8		5,2		
	Hexafluoro- propan-2-ol	TEABF			105	15		3		
		TBABF			94	7,4				
		ТВАРС				6,8		< 5		
		TBAPF				7,1				
		KF				1,6				
		CsF			93	4,0				
ionische Flüssigkeit	РС		Me ₃ STFSI 3.8 M		95	5,4	31	4,8	2,9	
	РС		Pyr ₁₄ TFSI 1.5 M		86	10	5,6	5,4	3,5	
			Pyr ₁₄ TFSI		76	2,2	77	5,6	3,7	
			Et₃NHTFSI		73	4,0	39	3,8	2,4	
Polymer	PVA 55.2%	LiClO ₄ 36.8-%		TiO ₂ 8%	11	0,13		4,6		
	PVA 35 %	CH ₃ COO-NH ₄ 15%	BmImCl 50%		28	7,3		4,0		
	PVdF-HFP 1:1	LiPF ₆ 0.5 M	EMImFAP 1 : 4		127	2,6		4,0		

Pyr_n = C_n-pyrrolidinium, T tetra, FSI (fluorosulfonyl)imid

4.2 Elektrolyt: thermische Beständigkeit (TGA-IR)

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

20

UMWELTnanoTECH

Ketone senken die Viskosität und erhöhen die Leitfähigkeit (Einsparung von Leitsalz)

UMWELTnanoTECH

Projektverbund · Umweltverträgliche

4.2 Elektrolyt: Schädliche Spuren von Wasser

UMWELTnanoTECH

UMWELTnanoTECH

5.1 Alterungsprodukte: GC-MS (12 mA/cm², 13 h, > 5 V) Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

°01× 4,5 Elektrolyt 3,5 A 2,5 1,5 1/16 0,5 t/min 01 1,4 Inneres 1,2 Acetonitril Gefäß N-Ethylacetamid **А** ^{0,8} Heterozyklen Triethylamin 0,6 Kohlenstoffwasserstoffe 0,4 0,2 14¹⁵16 t/min

Nachweis hetrozyklischer Alterungsprodukte aufgrund der Elektrolytzersetzung

UMWELTnanoTECH

5.2 Alterungsprodukte: TDS-GC/MS, Elektrolytrückstand Anwendungen der Nanotechnologie

UMWELTnanoTECH

5.3 Langzeittest: thermische Überlast, 60→140 °C

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

2.85 V, 350 F

Kapazität vs. Widerstand

UMWELTnanoTECH

5.3 Langzeittest: elektrochemische Alterung bei 3.85 V

5.3 Alterungsprodukte: TDS-GC/MS-Rückstandsanalyse

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

UMWELTnanoTECH

5.4 Alterungsmechanismen: Zusammenfassung

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

UMWELTnanoTECH

UMWELTnanoTECH

