UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Projektpräsentation

Bessere Effizienz und Stabilität organischer Halbleiterschichten

Prof. Dr. Mukundan Thelakkat

Universität Bayreuth

Angewandte Funktionspolymere

Problematik

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen

Prozessbedingte Morphologie von D/A Komponenten abhängig

Problematik

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Ziele dieser Projektarbeit

I. Umweltverträgliche Verarbeitung

- Synthese von alkohol- oder wasserlöslichen Halbleitermaterialien
- Untersuchung des Einflusses der ionischen/polaren Gruppen auf die Ladungsträgermobilität, Morphologie und Effizienz

UMWELTnanoTECH

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Kontrollierte Polymerisation: "Kumada Catalyst Transfer Polymerization"

- Molekulargewicht einstellbar
- Enge Molekulargewichtsverteilung
- Regioregularität > 95 %

J. C. Brendel, M. M. Schmidt, G. Hagen, R. Moos, M. Thelakkat, Chem. Mater. 2014, 26, 1992

Donor Polymer: PTHS

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Kontrollierte Polymerisation: "Kumada Catalyst Transfer Polymerization"

Donor Polymer: PTHS

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Precursor Polymer	M _n kg/mol (MALDI)	M _n kg/mol (SEC)	PDI (SEC)	n (MALDI)	PTHS	MW* kg/mol	
P3BrHT 1	3.1	2.9	1.27	13	PTHS 1	6.3	
P3BrHT 2	7.3	7.0	1.07	30	PTHS 2	14.6	
P3BrHT 3	20.7	20.0	1.09	84	PTHS 3	41.0	
		* bere	chnet aus n	und des MW	/ der Wiederh	oleinheit von	PTHS

> Mit zunehmendem Mol.Gewicht nimmt die Aggregation zu und Fluoreszenz ab

J. C. Brendel, M. M. Schmidt, G. Hagen, R. Moos, M. Thelakkat, Chem. Mater. 2014, 26, 1992

Donor Polymer: PTHS

Lochmobilität (SCLC)

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Mott Gurneys Gesetz:
$$J = \frac{9}{8} \varepsilon_r \varepsilon_0 \mu \frac{V^2}{L^3}$$
 $\mu_h = (1.2 \pm 0.5) \cdot 10^{-2} cm^2 V^{-1} s^{-1}$

> Sehr hohe Lochmobilität

- Optimierte Synthesebedingungen
- > Monoaddukte zur Erhaltung der elektronischen Eigenschaften

Akzeptor: C_{60/70}-(OEG)₂

Löslichkeit

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Fullerenderivat	Isopropanol	Aceton	Ethylester	THF
PC ₆₁ BM	0,7 mg/mL	0,5 mg/mL	1,04 mg/mL	2,72 mg/mL
C ₆₀ -(OEG) ₂ -1	5,4 mg/mL	>100 mg/mL	>100 mg/mL	>100 mg/mL
C ₆₀ -(OEG) ₂ -2	3,5 mg/mL	>100 mg/mL	>100 mg/mL	>100 mg/mL
C ₇₀ -(OEG) ₂	2,0 mg/mL	-	>100 mg/mL	>100 mg/mL

SCLC Elektronenmobilität (Aufbau: ITO/ZnO/C_{60/70}-(OEG)₂/Ca/Al)

Verglichen mit PC₆₁BM:

- Verbesserte Löslichkeit
- Ähnliche Elektronenmobilität im Bulk (µ_e = 10⁻³ cm²/Vs)

II. Langzeitstabile Morphologie Projektverbund Stabilisierung der Morphologie durch Vernetzung Umweltverträgliche Anwendungen der Nanotechnologie → Modulares Konzept unter Verwendung von 3-(6-Azidhexyl)thiophen vernetzbar unvernetzbar Kreuzkupplung verschiedene Methoden X = Boronester, Trialkylzinn, Halogene... Für x >> y: Gleiche Materialeigenschaften

Bsp: Stille Polykondensationen von Low-Bandgap Polymeren

Mukundan Thelakkat, Universität Bayreuth

UMWELTnanoTECH

Vernetzte vs Unvernetzte

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

 Lösungsmittelbeständigkeit wurde durch Spülen mit Chloroform untersucht

Vergleichbar hohe
 Lochmobilität von Referenz
 und funktionalisiertem ter Copolymer

Langzeitstabile Morphologie

Stabilsierung mittels Blockcopolymere

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

- Synthese von P3HT-b-PCBM-Blockcopolymeren
- Selbstorganisation in Block-Copolymeren
- Untersuchung des Einflusses von
 Fulleren Pfropfdichte (26 60 Gew.%)

M. Hufnagel, M. Fischer, T. Thum-Albrecht, M. Thelakkat, Macromolecules 2016, 49 (5), 1637

Morphologie von Blockcopolymeren Nanoskalige Phasentrennung in Block-Copolymeren

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

"Long period" der Nanostruktur von SAXS

BCP	q (nm ^{.1})	Long period (d = 2π/q) (nm)
P3HT-b-PPCBM 1	0,150	42
P3HT-b-PPCBM 2	0,165	38
P3HT-b-PPCBM 3	0,205	31

Ladungstransport in Block-Copolymeren

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

- Ambipolarer Ladungstransport in allen Block-Copolymeren (BCPs)
- Anstieg der Elektronenmobilität durch die Erhöhung der Pfropfdichte um 2 Größenordnungen

M. Hufnagel, M. Fischer, T. Thum-Albrecht, M. Thelakkat, Macromolecules 2016, 49 (5), 1637

Ladungstransportoptimierung

Optimierung der Mobilität durch Zugabe von PCBM

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Stabile BCP:PCBM Morphologie

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Beim Tempern bei 160°C

- > Phasentrennung in P3HT: PCBM nach 120 min Tempern bei 160 ° C
- Kein Einfluss des Temperns auf Ladungstransport und Morphologie in BCP:PCBM Mischung

M. Hufnagel, M. Thelakkat, J. Polym. Sci. Pt. B-Polym. Phys. 2016, 54 (12), 1125

III. "Scale up" der Materialproduktion

UMWELTnanoTECH

- Mikrowellenreaktor und Flow-Reaktor in Betrieb genommen
- > Optimierung der Reaktionsbedingungen im Mikrowellenreaktor
- > Anschließende Übertragung der Reaktion auf Flow-Reaktor

> Kontinuierliche Synthese und "scale up" für diverse Polymere durchgeführt

Stabile Solarzellen

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Identifizierung der luftstabilen Ladungsextraktionsschichten

- Ca-Kathode ist f
 ür Extraktion von Elektronen am besten, aber nicht luftstabil
- Austausch von Ca-Kathode ist f
 ür stabile Solarzellen n
 ötig
- Vergleich von verschiedenen Kathoden

Aktive Schicht:PDDPTPT:PC71BM

Solarzellen

UMWELTnanoTECH

Vergleich der Ladungsextraktionsschichten

Aktive Schicht: PDDPTPT:PC71BM

- ➢ Hohe J_{sc} mit Kathoden mit niedriger Austrittsarbeit
- niedrige V_{oc} mit Ca aufgrund der hohen Elektroneninjektion
- Built-in-Spannung (V_{bi}) wurde durch Elektro-Absorptions-Spektroskopie bestimmt
- Vergleichbare V_{bi} für allen Solarzellen
- Die beste Leistung mit PFN/ Al-Kathode

Elektrode	Kurzschluss Strom (J _{sc})	Leerlaufspannung	Füllfaktor (FF)	Effizienz (η)	"Built-in"
		(V _{oc})			Spannung (V _{bi})
	(mA/cm²)	(V)	(%)	(%)	(V)
AI	8,6 (8,5)	0,68 (0,67)	44 (43)	2,6 (2,5)	1,05 ± 0,05
PFN/AI	10,3 (10,2)	0,76 (0,75)	59 (58)	4,7 (4,5)	1,11 ± 0,08
Ca/Al	9,4 (9,1)	0,55 (0,55)	56 (56)	2,9 (2,8)	1,25 ± 0,10
Zracac/Al	9,9 (9,9)	0,74 (0,74)	53(53)	3,9 (3,9)	1,09 ± 0,20

C. R. Singh, C. Li, C. J. Mueller, S. Hüttner, M. Thelakkat, Adv. Mater. Interfaces 2016, 3, 1500422

Zusammenfassung

UMWELTnanoTECH

- Synthese und Charakterisierung von wasserlöslichen konjugierten Polymeren als Donormaterial
- Synthese und Charakterisierung von in THF, Aceton und Ethylacetat löslichen Fullerenderivaten als Akzeptormaterialien
- Synthese von stabilen vernetzbaren Polymeren durch einen neuartigen Ansatz
- Synthese von neuen mit Fulleren gepfropften Donor-Akzeptor-Block-Copolymeren als Verträglichkeitsvermittler für Morphologie Kontrolle
- Hohe thermische Stabilität und Ladungsträgermobilitäten in BCP:PCBM-Mischungen
- > Optimierung der Reaktionen auf Flowreaktor zum "Scale-up" der Materialien
- Identifizierung von Kathoden f
 ür hohe Leistung und stabile Solarzellen

Publikationen im Rahmen des Projektes

UMWELTnanoTECH

- J. C. Brendel, M. M. Schmidt, G. Hagen, R. Moos, M. Thelakkat, *Chem. Mater.* 2014, 26, 1992
- 2) C. R. Singh, C. Li, C. J. Mueller, S. Hüttner, M. Thelakkat, *Adv. Mater. Interfaces* **2016**, 3, 1500422
- C. J. Mueller, T. Klein, E. Gann, C. R. McNeill, M. Thelakkat, *Macromolecules* 2016, 49 (10), 3749
- 4) M. Hufnagel, M. Fischer, T. Thum-Albrecht, M. Thelakkat, *Macromolecules* 2016, 49 (5), 1637
- 5) M. Hufnagel, M. Thelakkat, J. Polym. Sci. Pt. B-Polym. Phys. 2016, 54 (12), 1125

Danksagung

UMWELTnanoTECH

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Chetan Raj Singh

Martina Schmidt

Christian Müller

Martin Hufnagel

applied functional polymers

www.afupo.de

