UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Abschlusspräsentation, *Next Generation Solar Energy Meets Nanotechnology*, 23 - 25 November 2016, Erlangen

Hybridkondensatoren für smart grids und regenerative Energietechnologien

G. Antalyali, T. Staab, U. Guntow, G. Sextl

Julius-Maximilians-Universität Würzburg

Fakultät für Chemie und Pharmazie Lehrstuhl für Chemische Technologie der Materialsynthese

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Zielsetzung

Geräte und Messbedingungen

Ergebnisse und Diskussion

Zusammenfassung und Ausblick

Zielsetzung

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Ragone Diagramm

- Vergleich verschiedener
 Energiespeichersysteme
- Eigenschaften f
 ür die gew
 ünschte Anwendung einstellbar

Leistungsdichte (W/kg)

Energiedichte (Wh/kg)

Zielsetzung

Vor- und Nachteile von Batterien und DoppelschichtProjektverbund · Umweltverträgliche
Anwendungen der Nanotechnologie
kondensatoren

Batterie

- Energiespeicherung über Redoxreaktionen/ elektrochemische Reaktionen
- hohe Energiedichte
- begrenzte Leistungsdichte
- Zyklenstabilität ? (eingeschränkte Zyklenzahl)

Doppelschichtkondensator

- Energiespeicherung in der elektrochemischen Doppelschicht
- niedrige Energiedichte
- hohe Leistungsdichte
- exzellente Zyklenstabilität

Zielsetzung Lösung: Hybridkondensatoren

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Lösung: Energiespeicher mit maßgeschneiderter Energie- und Leistungsdichte

Hybridkondensator

- Kombination der Vorteile einer Lithium-Ionen-Batterie und eines Doppelschichtkondensators
- Energiespeicherung via elektrochemische Reaktionen und in der elektrochemischen Doppelschicht

Vorteile

- höhere Leistungsdichte als die Batterie
 - grössere Zahl der Ladezyklen
- höhere Energiedichte als der Doppelschichtkondensator

Zielsetzung

UMWELTnanoTECH

Schematischer Aufbau eines Hybridkondensators

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Janina Molenda and Marcin Molenda (2011). Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System., Metal, Ceramic and Polymeric Composites for Various Uses, Dr. John Cuppoletti (Ed.), ISBN: 978-953-307-353-8

Thermische Vorbehandlung

Thermische Modifikation der Kohlenstoffe an Luft vor der Synthese

Ausgangspunkt: Verbesserung der Beschichtungsqualität

×

UMWELTnanoTECH

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Hydrothermalsynthese

Thermische Nachbehandlung

Thermische Nachbehandlung von Lithiumeisenphosphat Nach der Synthese

Ausgangspunkt: Verbesserung der elektrochemischen Leistung

UMWELTnanoTECH

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Elektrodenherstellung

Zellbau für die elektrochemischen Messungen

- > Vorbereitung in der Glove-Box (Argon-Atmosphäre)
- Messzellen der Firma EI-Cell oder Knopfzelle (hier Beispiel Knopfzelle)

Elektrolyt LP30 (1 M LiPF₆ in DMC/EC (1:1))

Separatoren der Firma Celgard und Freudenberg

Tränken des Separators mit Elektrolyt

Knopfzelle

UMWELTnanoTECH

Zellbau für die elektrochemischen Messungen

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Messzelle der Firma El-Cell

UMWELTnanoTECH

Elektrochemische Messungen

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Elektrochemische Messungen finden im Messlabor TKIII 220 statt.

Elektrochemische Messungen

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Thermische Behandlung von Aktivkohlenstoff

Synthese von Aktivmaterialien

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

UMWELTnanoTECH

> Synthesen von LiFePO₄ (oben) und $Li_4Ti_5O_{12}$ (unten) mit Kohlenstoff

Kuraray YP-50F

Anode

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Thermische Analyse und Diffraktogramme von demAnwendungen der Nanotechunbehandelten und thermisch vorbehandeltem Kohlenstoff (an Luft/15 Min)

 REM-Aufnahmen von unbehandeltem Kohlenstoff
 Kuraray YP-50F (links) und thermisch vorbehandeltem
 Kohlenstoff: 15 Minuten an Luft bei 300°C (rechts).

Thermische Analyse des LFP beschichteten Kohlenstoffs

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Synthese funktioniert und Nachweis des LFP-Anteils

 \succ LFP@C 10/90 \rightarrow 10% Restmasse \rightarrow 10% LFP

- > LFP@C 50/50 \rightarrow 50% Restmasse \rightarrow 50% LFP
- Die thermische Nachbehandlung hat offensichtlich keinen Einfluss an LFP@C.

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Untersuchung des Separatoreinflusses auf ein Hybridkondensatorsystem

> 8 verschiedene kommerzielle Separatoren wurden in Labormesszellen getestet:

Aktivkohlenstoff // Separator / CB10 // Aktivkohlenstoff

> Um den Einfluss des Separators zu untersuchen, wurde folgender Zellaufbau verwendet:

Anode	Aktivkohlenstoff/Leitruß/Binder
Elektrolyt	CB10 (1M Tetraethylammonium Tetrafluoroborat in Acetonitril)
Separator	Variierend
Kathode	Aktivkohlenstoff/Leitruß/Binder
Messzelle	EI-Cell / (Swagelok)

Messaufbau und Mittelverwendung

UMWELTnanoTECH

- Messaufbau optimiert
- Exemplarisch ist der Ragone-Plot einer Messzelle mit dem Separator A dargestellt. Die gleiche Messung wurde links in einer El-Cell und rechts in einer Swagelok-Zelle durchgeführt.
- Die Ergebnisse der Einzelmessungen liegen im Falle der EI-Cell deutlich näher zusammen. (Der Messfehler ist kleiner.)
- Swagelok Zelle: mangelnde Reproduzierbarkeit der Ergebnisse

Untersuchung des Separatoreinflusses auf ein Hybridkondensatorsystem

Ragone-Plots von verschiedenen Separatoren der Firmen Freudenberg (FS) und der Firma Celgard (Celgard). Aufgetragen ist jeweils der Mittelwert aus 3 Einzelmessungen.

UMWELTnanoTECH

Untersuchung des Separatoreinflusses auf ein Hybridkondensatorsystem

- Die Unterschiede zwischen den Separatoren sind hinsichtlich ihrer elektrochemischen Eigenschaften relativ gering und liegen im Bereich des Messfehlers der verwendeten Messzellen.
- Celgard 2325 wurde wegen seiner geringen Dicke (25 µm) als Separator für die weiteren elektrochemischen Untersuchungen festgelegt.

Eigenschaft	Celgard 2325	FS 2227 E	FS 2225 E	FS 2226 14 E	FS 2226 E
Separator	PP I PE I PP	PO / F ₂			
Basis Weight (g/m ⁻²)	10	67	50	60	60
Thickness (μ <i>m</i>)	25	215	150	140	180
Pore Volume (%)	39	66	65	55	65

UMWELTnano**TECH**

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Hybridkondensatoren

*Elektrochemische Ergebnisse für Li*₄Ti₅O₁₂ (LTO) als Hybridelektrode

Messbedingungen: Knopfzelle, Anode: Li, Elektrolytsalz: LiPF₆, Kathode: C (links) and Li₄Ti₅O₁₂@C (rechts), Potentialbereich: 1,3 V – 2,5 V Li/Li⁺

- Vergleich der elektrochemischen Leistung: links unbeschichteter Kohlenstoff (Referenz) und rechts LTO-beschichteter Aktivkohlenstoff
- Hybridelektrode: Verdopplung der Spezifischen Kapazität gegenüber dem unbeschichteten Kohlenstoff!!

UMWELTnanoTECH

UMWELTnano**TECH**

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Elektrochemische Ergebnisse für die unbehandelten und vorbehandelten Kohlenstoffe

Messbedingungen: Knopfzelle, Anode: Li, Elektrolytsalz: LiPF₆, Kathode: C, Potentialbereich: 2,5 V – 4,0 V Li/Li⁺

- Vergleich der elektrochemischen Leistung: unbehandelter Kohlenstoff (Referenz) und bei 275°C und 325°C an Luft thermisch vorbehandelte Kohlenstoffe
- Ergebnisse liegen nah an einander und es sind keine großen Unterschiede in der spezifischen Kapazität gegenüber dem unbeschichteten Kohlenstoff zu erkennen.

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Elektrochemische Ergebnisse für die unbehandelten und ^{All}vorbehandelten Kohlenstoffe beschichtet mit LFP:C = 10/90

Messbedingungen: Knopfzelle, Anode: Li, Elektrolytsalz: LiPF₆, Kathode: C beschichtet mit LFP, , Potentialbereich: 2,5 V – $4,0 \text{ V Li/Li}^+$

- Vergleich der elektrochemischen Leistung: unbehandelter Kohlenstoff beschichtet mit LFP:C 10/90 (Referenz) und bei 275°C und 325°C an Luft thermisch vorbehandelte Proben, ebenso mit LFP:C 10/90 beschichtet
- die elektrochemische Performance von den zwei vorbehandelten Proben ist schlechter als die Referenz Probe; d.h. es konnte keine Verbesserung beobachtet werden

UMWELTnano**TECH**

- Vergleich der Folien 26 und 27
- noch kein Hybrideffekt bei LFP

UMWELTnanoTECH

Projektverbund · Umweltverträgliche

Elektrochemische Ergebnisse für die nachbehandelten, mit LFP:C = 10/90 beschichtete Kohlenstoffe

Messbedingungen: Knopfzelle, Anode: Li, Elektrolytsalz: LiPF₆, Kathode: C beschichtet mit LFP, , Potentialbereich: 2,5 V -4.0 V Li/Li+

Vergleich der

elektrochemischen Leistung: unbehandelte und thermisch nachbehandelte Kohlenstoffe beschichtet mit LFP:C 10/90

- Die nachbehandelten Proben haben höhere Kapazitätswerte im Vergleich zu unbehandelter Kohlenstoff mit Beschichtung
- Bei der Auswertung wurde der Bezugspunkt in den Aktivmassen geändert, um den Effekt durch die Temperaturnachbehandlung stärker herauszuarbeiten₂₈

- Hybrideffekt f
 ür LTO: Spezifische Kapazit
 ät verdoppelt gegen
 über dem Kuraray
- Noch kein Hybrideffekt f
 ür vorbehandelte LFP Proben jedoch erh
 öhte Kapazit
 ätswerte bei den nachbehandelten LFP Proben erreicht
- Die auftretenden Unterschiede in den Absolutwerten weisen unter Umständen auf individuelle Einflüsse im Zellbau (z.B. Substrate, Elektrodendicke, Kalandrierung), deshalb können Werte nur innerhalb einer Messreihe verglichen werden.

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

 Bayerisches Staatsministerium f
ür Umwelt und Verbraucherschutz

finanziert durch Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Fraunhofer-Institut für Silicatforschung, Zentrum für Angewandte Elektrochemie

Fraunhofer

- Frau Dr. Gabriele Ried
- Herr Dr. Reinhard Zeitler
- Herr Dipl.-Ing. Wolfgang Krätschmer