UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Abschlusskongress 23. bis 25.11.2016 Erlangen

Drucktechnologien zur Herstellung thermoelektrischer Generatoren

Projektleiter: Prof. Dr.-Ing. Marcus Reichenberger

Bearbeitung: M.Sc. Kristina Grunewald

Technische Hochschule Nürnberg

Fakultät efi, Labor für Aufbau- und Verbindungstechnik, Institut für Chemie, Material- und Produktionsentwicklung (CMP)

Inhalt

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- > Projektüberblick
- > Projektergebnisse
- > Zusammenfassung

Problemstellung

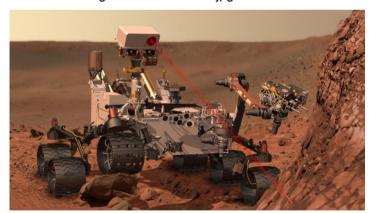
UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Problemstellung

Anwendung:

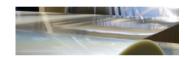
Einsatz von thermoelektrischen Bauteilen derzeit nur für Nischenanwendungen


Nachteile aktueller Realisierungen

- > teure Produktionsprozesse
- geringe geometrische Flexibilität
- hohe Materialkosten
- > oftmals toxische Materialien

Quelle: http://cdn.bimmertoday.de/wp-content/uploads/BMW-Waermenutzung-Turbosteamer-08.jpg

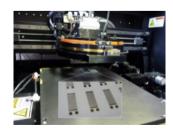
Quelle: http://images02.futurezone.at/mars-arbeit artistsrendition.jpg/fuzo-slideshow-slide/24.544.548


Projektansatz

UMWELTnano**TECH**

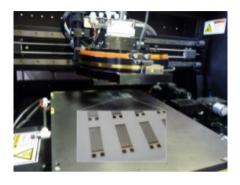
Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- ➤ Realisierung thermoelektrischer Low-Cost Generatoren für die Nutzung in mobilen Systemen:
 - > Temperaturen bis max. 90 °C auf Basis von:
 - > preiswerten Substraten



preiswerten und umweltschonenden thermoelektrischen Nanomaterialien

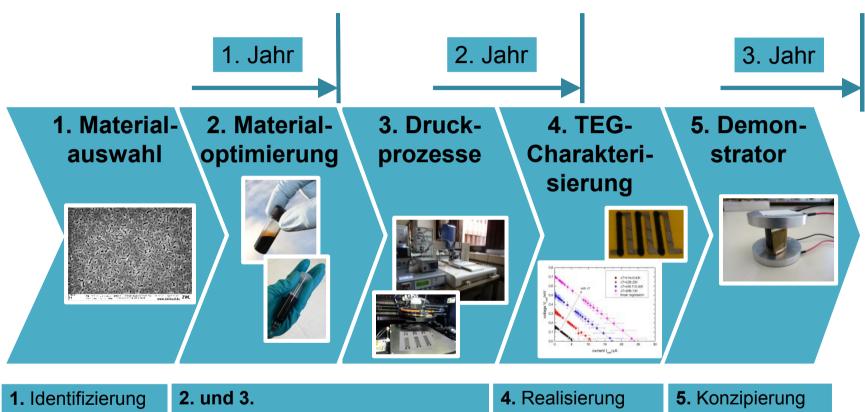
> mit Hilfe von angepassten, volladditiven Fertigungsprozessen durch den Einsatz von Drucktechnologien



Projektansatz

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Vorteile der Herstellung von TEG mittels Drucktechnologien:


- > geringer Materialverbrauch, durch Verwendung dünnerer Schichten
- > Flexibilität in der Layoutanpassung
- > schnelle Herstellung mittels geringem Arbeitsaufwand
 - ► Zeitersparnis

Ablaufplan

UMWELTnanoTECH

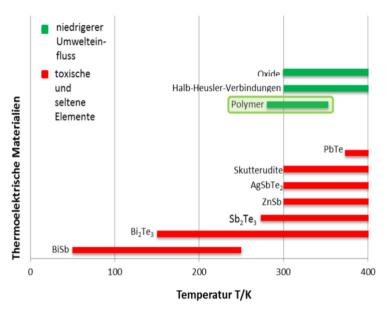
Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- von druckbarer, geeigneter Materialien für TEG und Trägerwerkstoffe
- Anpassung von Material und Prozesstechnik
- Optimierung des Fertigungsprozesses

- **4.** Realisierung und Charakterisierung von geometrischen Aufbauvarianten
- **5.** Konzipierung und Realisierung eines Demonstrators

Materialrecherche und -auswahl

UMWELTnanoTECH


Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Literaturrecherche - Materialauswahl

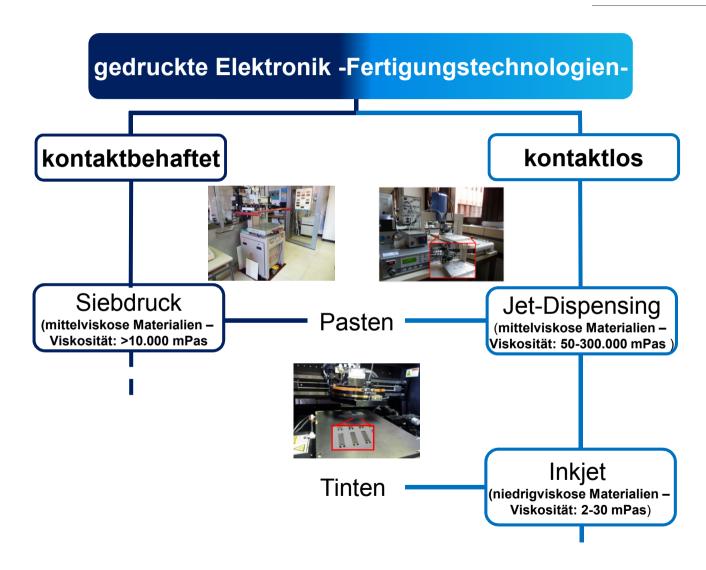
- ➤ Auswahl geeigneter Materialien:
 - PEDOT:PSS und mögliche Nanokomposite, wie CNT und Graphen
 - Si und SiGe Nanopartikeltinten (WSI-TUM)

Kontaktierung: Ag(-nano) Tinte/Paste Marktanalyse zu PEDOT:PSS, CNT und Graphen

- Identifizierung von möglichen Lieferanten
 - ▶ Beschaffung

Flexible Basismaterialien

- gute Trägerwerkstoffe mit geringen Wärmeleitfähigkeiten:
 - ➤ Polyimid (PI),

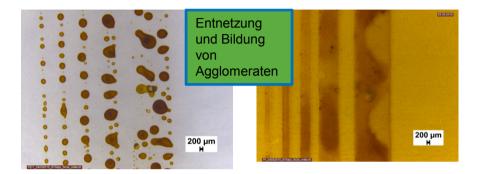


Polyethylenterephthalat (PET)

UMWELT nanoTECH

Festlegung der Drucktechniken

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

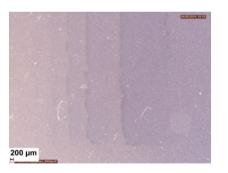

Auswahl und Verarbeitung der Materialien

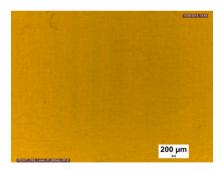
UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Si und SiGe n-dotiert (Inkjet-Tinte)

sehr schlechtes
 Benetzungsverhalten auch nach
 kurzfristiger Präparation, schneller
 Verarbeitung und Plasma behandlung der Substrate




Druckergebnis auf PET

Druckergebnis auf PI

PEDOT:PSS (Inkjet Tinte)

- hoher Reinigungsbedarf
- Tropfengenerierung nicht reproduzierbar

≻ Konzentration auf höherviskose Materialien → Pasten

UMWELTnanoTECH

Auswahl und Verarbeitung der Materialien

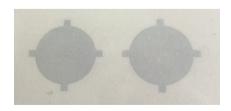
Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

PEDOT:PSS

Druckkombination


Siebdruck/Jet-Dispenser

Inkjet/Jet-Dispenser



Jet-Dispensed

- reproduzierbare Strukturen; Schichtdicke: 3-4 μm
- ➤ Jet-Dispense Prozess für die Herstellung von PEDOT:PSS Schenkeln geeignet Siebdruck

- > Schichtdicke: 150-200 nm
- > sehr dünne Strukturen

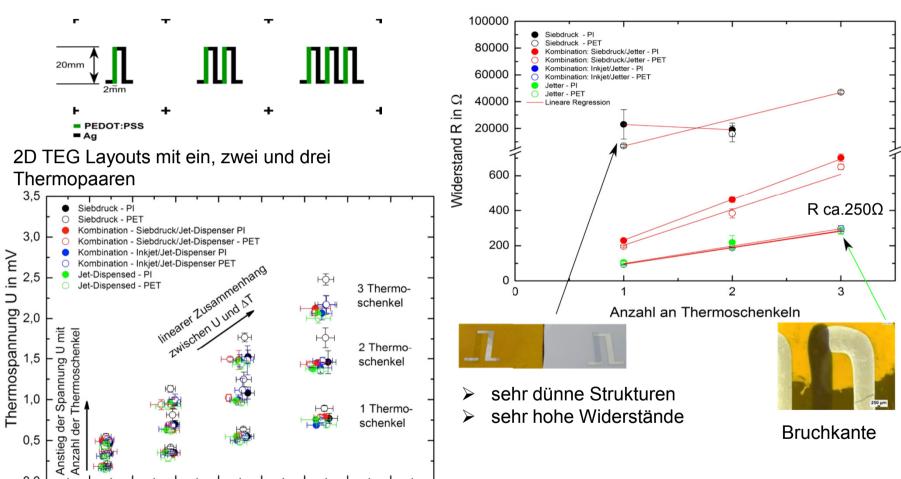
20

10

30

40

Temperaturdifferenz ΔT in K


50

60

UMWELTnanoTECH

Herstellung und Charakterisierung

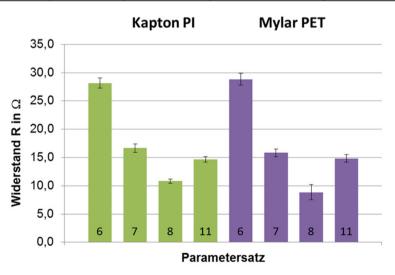
Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

80

70

Festlegung auf Druckkombination Inkjetdruck und Jet-Dispensing

Parameteroptimierung des Druckprozesses

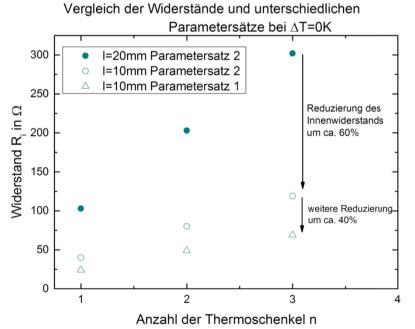


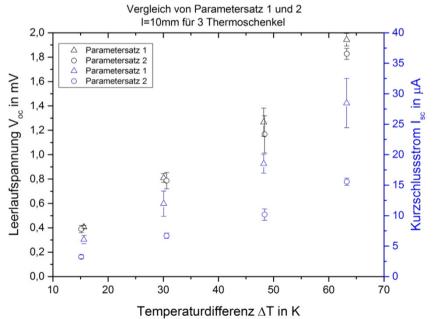
Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Weiteres Vorgehen zur Widerstandsreduzierung der TEG Strukturen

- Optimierung der Druckparameter am Jet-Dispenser an PEDOT:PSS Linien (Schenkellänge I=20 mm und -breite b=2-3 mm)
- Jet-Dispense Prozess beeinflusst durch folgende Parameter
 - > Luftdruck
 - Öffnungs- und Schließzeiten der Düsen (ON/OFF TIME)
 - Geschwindigkeit und Beschleunigung des Druckkopfes

			Geschwindigkeit	
Parametersatz	Druck	On-/Off-Time	AeroJet-Kopf	Beschleunigung
6	0,035 MPa	6 ms	50 mm/s	30 ms
7	0,035 MPa	6 ms	30 mm/s	30 ms
8	0,035 MPa	3 ms	30 mm/s	30 ms
11	0,025 MPa	3 ms	30 mm/s	30 ms



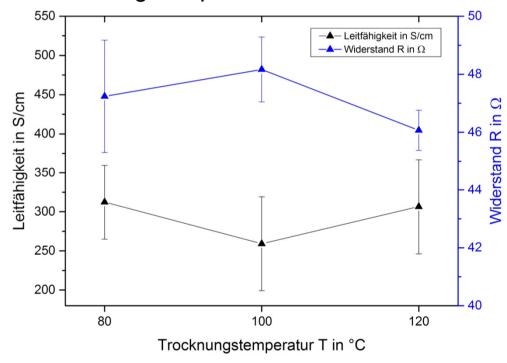

Parameteroptimierung des Druckprozesses

Parametervergleich und Geometrieuntersuchung

➤ Reduzierung der Schenkellänge von 20 mm auf 10 mm mit den folgenden Druckparametern (Schenkelbreite unverändert)

	Druck	ON/OFF TIME	Geschwindigkeit Druckkopf	Beschleunigung
Parametersatz 1	0,035 MPa	3 ms	60 mm/s	10 ms
Parametersatz 2	0,035 MPa	3 ms	30 mm/s	30 ms

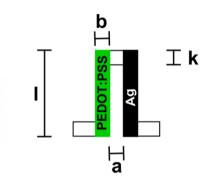
UMWELTnanoTECH


Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Trocknungsuntersuchung

Untersuchung der Trocknungsbedingungen

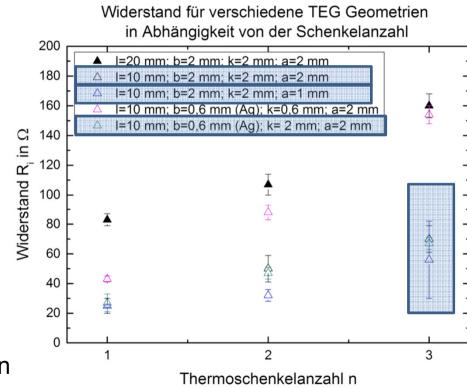
Optimierung der Trocknungstemperatur und -zeit



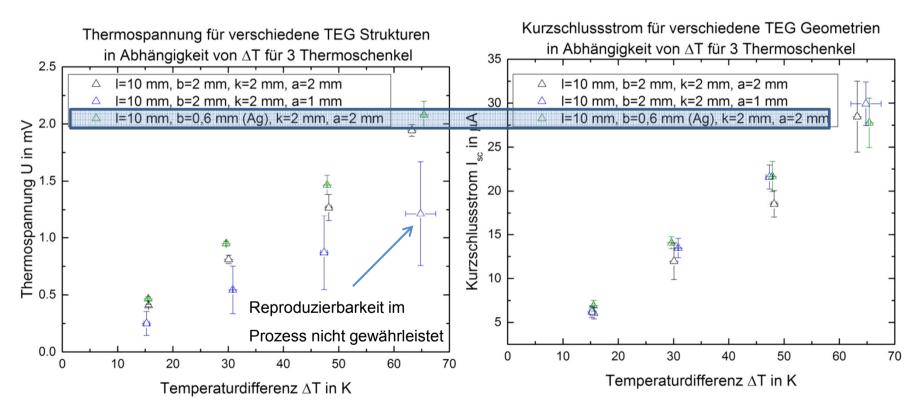
Reduzierung der Trocknungszeit und Erhöhung der Temperatur keinen essentiellen Einfluss → Festlegung der Trocknung: 120 °C bei 20 Min.

Geometrieanpassung – elektrische Charakterisierung Anwendungen der Nanotechnologie

Geometriebetrachtung:



I: Schenkellänge

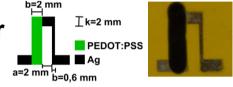

b: Schenkelbreite

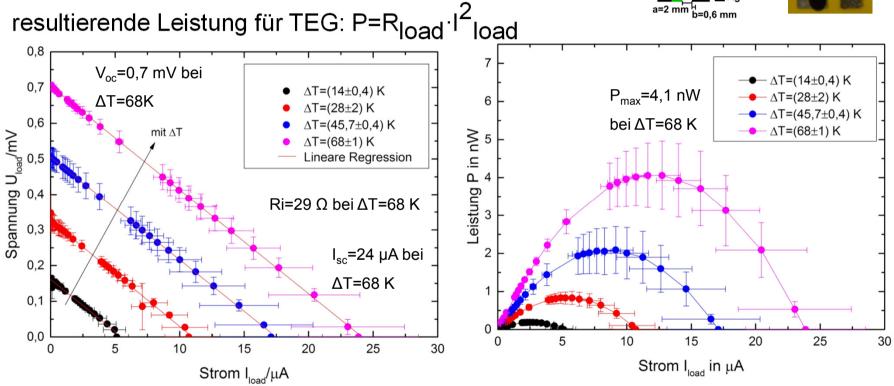
k: Breite der Kontakte

a: der Abstand zwischen den Schenkeln

Geometriebetrachtung:

> Thermospannung und Kurzschlussstrom unabhängig von Probengeometrie


UMWELTnanoTECH


Elektrische Charakterisierung an optimierten

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Geometrien

elektrische Charakterisierung an ausgewählter Struktur

Skalierung: Reihenschaltung aus 1000 Schenkeln: P_{max} =4,1 μ W mit R_i =29 $k\Omega$

> P ausreichend für mobile Anwendung (1,5 μW-100 μW) aber Widerstand zu hoch

Demonstrator

Konzept für Reduzierung des Innenwiderstands für einen Demonstrator

- Reduzierung der Widerstände und damit Erhöhung des Stroms durch Flächenstrukturen
- > Spannungserhöhung über Reihenschaltung
 - führt wiederum zu einer Widerstandserhöhung

➤ Konzept für Parallelschaltung notwendig – aktuell noch in Bearbeitung

Demonstratorkonzept

aufrollen der TEG Strukturen

aufskalieren von Spannung und Strom für die Ansteuerung einer LED

Zusammenfassung

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- ➤ Si/SiGe- und PEDOT:PSS Tinten nicht applizierbar wegen
 Agglomerationsproblemen und schlechtem Benetzungsverhalten
- > Materialfestlegung: Nano-Ag Tinten und PEDOT:PSS
- > Ergebnisse für Druckkombinationen: 2 mV bei ΔT=65 K für drei-schenkligen TEG (unabhängig von Druckprozess); Durchgangswiderstand beeinflusst von Druckkombination aufgrund unterschiedlicher Schichtdicken
- Druckkombinationsfestlegung aufgrund der Ergebnisse bzgl. des Durchgangswiderstandes (drei-schenkliger TEG): Inkjetdruck (Ag) und Jet-Dispensing (PEDOT:PSS) Verfahren
 - \succ Ergebnis Widerstand (drei Schenkel): ca. 250 $\Omega \rightarrow$ Widerstands-reduzierung notwendig

Zusammenfassung

Anwendungen der Nanotechnologie

- > Parameteroptimierung des Jet-Dispense Prozesses zur Reduzierung von Ri
- > Geometrieuntersuchung an Thermoelektrischen Generatoren
- > nach Geometrieanpassung:
 - > IV Kennlinie abhängig von Temperaturdifferenz
 - \triangleright Leistung für einschenkligen TEG 4,1 nW mit R_i=29 Ω bei 1000 Schenkeln 4,1 μW mit R_i=29 k Ω
- ➤ Konzeptentwicklung: PEDOT:PSS Flächenstrukturen für Widerstandsreduzierung
- ➤ Entwicklung eines Demonstratorkonzepts für die Ansteuerung einer LED