UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

finanziert durch Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Next Generation Solar Energy

23 - 26 November 2016

Umweltverträgliche Hocheffiziente Organische Solarzellen (UOS)

Prof. Dr. Vladimir Dyakonov

Julius-Maximilians Universität Würzburg Lehrstuhl für Energieforschung

Prof. Christoph Brabec

Friedrich-Alexander Universität Erlangen-Nürnberg Lehrstuhl für Materialien der Elektronik und der Energietechnologie

- Solarzellen aus umweltfreundlichen (grünen)
 Photovoltaik (PV)-Tinten
- Bestimmung mikroskopischer Parameter
 → umweltfreundlich vs. toxisch
- 3) Simulation von thermodynamischen Eigenschaften mittels COSMO-RS
- 4) Wasserbasierte PV-Tinten bestehend aus nanopartikulären organischen Hableitern

Organische Solarzellen hergestellt aus umweltfreundlichen (grünen) Photovoltaik–Tinten

Hansen Löslichkeits-Parameter (HSP)

UMWELTnanoTECH

Projektverbund · Umweltverträgliche

Anwendungen der Nanotechnologie

R

δΗ

$$\delta = \sqrt{\frac{\Delta E_{\nu}}{V_m}}$$

Energie pro Volumen, die nötig ist um intermolekulare Bindungen des Feststoffes zu überwinden

Aufteilung in die verschiedenen Bindungsarten ergeben die HSP $(\delta)^2 = (\delta_D)^2 + (\delta_P)^2 + (\delta_H)^2 \qquad \checkmark_{\delta P}$

D: disperse Bindung; P: polare Bindung; H: Wasserstoffbrückenbindung

- HSP in 3D: Löslichkeitskugel mit Radius R
 - Vorauswahl an Lösungsmitteln (LM)
 - Geeignete Lösungsmittel innerhalb der Kugel
 - Je ähnlicher die HSP von Material und LM, desto höher die Löslichkeit

δD

Binäre Lösungsmittelmischungen

UMWELTnanoTECH

Solarzellen aus grünen Lösungen

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Lösungsmittel(-mischungen)	J _{sc} (mA/cm²)	PCE (%)	V _{oc} (V)	FF (%)
DCB (toxisch)	-7,58	3,15	0,92	44,90
Dioxolan-Cymen (toxisch/grün)	-7,71	2,99	0,92	42,16
Dioxolan-Diethylbenzol (grün)	-7,66	3,01	0,92	42,60
Dioxolan-Methylanisole (grün)	-7,85	2,96	0,90	41,74

grün vs. toxisch Vergleichbare

Wirkungsgrade

Bestimmung mikroskopischer Parameter → umweltfreundlich vs. toxisch

Bestimmung mikroskopischer Parameter

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

OTRACE¹: OCVD (open circuit voltage decay) kombiniert mit Ladungsextraktionsmessmethode CELIV (charge carrier extraction by linearly increasing voltage)

Lebensdauer und Beweglichkeit der Ladungsträger lassen sich unter realen Arbeitsbedingungen (solare Einstrahlung) bestimmen

OTRACE

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

> Optimierung der Morphologie via Additive

- vergleichbare Ladungsträgermobilität
- kein negativer Einfluss auf Ladungsträgerkonzentration

OCVD

- > LY235 Solarzellen: grüne Formulierungen vs. CB
- Nur die OPV46 Mischung zeigt einen OCVD Verfall, welcher in der gezeigten Zeitskala nicht durch Shunts beeinflusst ist

TPV/CE

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- > OPV46 basierte Solarzellen:
 - bei geringen Beleuchtungsstärken nicht beeinflusst von Shunts
 - lange Ladungsträgerlebensdauer:

28 μs bei 1 Sonne 4.7 ms bei 10⁻⁴ Sonnen

Simulation der HSP mittels COSMO-RS kombiniert mit einem künstlichen neuronalen Netzwerk

UMWELTnanoTECH

HyperChem

- Molekulardesign ____
- Energetisch günstigste Struktur

COSMOtherm

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

 Quantenchemische Optimierung
 Verteilung der Ladungsträgerdichte (Sigma Profil (P(σ)))

Neuronales Netzwerk

Sigma Profil

 $P_{\rm s}^{\rm X}(\sigma) = C_0 + C_1 M_0^{\rm X} + C_2 M_1^{\rm X} + C_3 M_2^{\rm X} + C_{10} M_{\rm hb,acc}^{\rm X} + C_{14} M_{\rm hb,don}^{\rm X}$

Vorhersage vs. Experiment

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- Simulation (DFT-ANN) ergibt vergleichbare Werte
- Spart Messung und Kosten der Materialien
- > Designtool für Moleküle mit geeigneten Eigenschaften

component		exp-BGM	exp-FGAT ³⁵	MD ^{7,36,37}	DFT-ANN
PC ₆₁ BM	δ_{T}	20.48		21.78	21.60
	δ_{d}	19.70		20.18	20.60
	$\delta_{\rm p}$ + $\delta_{\rm hb}$	7.80		7.97	9.16
bisPC ₆₁ BM	δ_{T}	21.78	20.70		25.41
	$\delta_{ m d}$	20.83	19.70		24.32
	$\delta_{\rm p}$ + $\delta_{\rm hb}$	8.92	8.60		8.75
ICMA	δ_{T}	20.30		20.45	20.56
	δ_{d}	19.50		20.04	20.40
	$\delta_{\rm p} + \delta_{\rm hb}$	7.90		4.09	2.90
ICBA	δ_{T}	21.74	20.50		20.81
	$\delta_{ m d}$	21.00	19.80		20.44
	$\delta_{\rm p} + \delta_{\rm hb}$	7.50	7.00		5.53
PC71BM	δ_{T}	20.90		21.58	21.20
	δ_{d}	20.20		20.06	20.95
	$\delta_{\rm p} + \delta_{\rm hb}$	7.30		7.37	4.44

²Perea, J.D., Langner, S. et.al, J.Phys. Chem. B, 120, 19, 2016, 4431-4438

Phasendiagramme

UMWELTnanoTECH

Wasserbasierte PV-Tinten bestehend aus nanopartikulären organischen Halbleitern

Synthese von org. Nanopartikeln

UMWELTnanoTECH

Charakterisierung der Nanopartikel

UMWELTnanoTECH

SEM Aufnahmen der Nanopartikel (NP)

Mittlere Größe 120 nm

Nanopartukuläre Solarzellen

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Glas/ITO/ZnO/Nanopartikel/MoO₃/Ag

Nanopartikel	V _{oc} [V]	J _{sc} [mA cm ⁻²]	FF [%]	PCE [%]
P3HT:ICBA	0.72	6.40	43.7	2.02
DPP5t-2:PCBM	0.52	8.70	51.9	2.35

Unser Dank geht an...

finanziert durch Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

