UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

Abschlussbilanz und Fachtagung, November 2016 Nürnberg

Ultraschnelle elektrische Speicher auf Basis von Nanodiamantkompositen

Prof. Dr. Anke Krueger

Universität Würzburg, Institut für Organische Chemie, in Kooperation mit ZAE Bayern, Würzburg, Projektleitung: Dr. Gudrun Reichenauer

finanziert durch Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Einführung und Motivation

- > Lösungsansätze
- > Ergebnisse

Ausblick

Einführung und Motivation

UMWELTnanoTECH

Kohlenstoff-basierte Komposite als elektrische Energiespeicher Anwendungen der Nanotechnologie

Anwendungen schneller Energiespeicher

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Anwendungen schneller Energiespeicher mit hoher Ladungsdichte

Speicherung von Bremsenergie (z.B. im Nahverkehr) Nutzung der Windkraft (Schlupfregelung, Regelung der Rotorblattausrichtung)

Sicherheitstechnik (z.B. Tür-Notsystem im A380)

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Nanodiamant bzw. Nanoonions in Supercaps

> Nanodiamant als Vorstufe für Kohlenstoff-Allotrope (Nanoonions) in

Superkondensator-Komposit-Elektroden

Beitrag zur Entwicklung hoch effizienter Energiespeicher mit um eine Größenordnung erhöhter Leistungsdichte und um Faktor 4 erhöhter volumetrischer Energiedichte

Einführung und Motivation

+

UMWELTnanoTECH

Kohlenstoff-basierte Komposite als elektrische Energiespeicher Anwendungen der Nanotechnologie

Synthetische Aktivkohle (Kohlenstoff-Aerogel) Nanodiamanten (ND) bzw. Carbon Nanoonions (CNO)

Lösungsansatz Kohlenstoff-basierte Komposite

Zeitpunkte der Integration der Nanodiamanten (ND) bzw. Nanoonions (NO) Ansätze:

Achtung:

Homogene Verteilung zur definierten Charakterisierung der Komposite nötig!

Lösungsansatz

Kohlenstoff-basierte Komposite

Ansatz A (Einbringung in Gel-Lösung)

Problematik:

Mischen von RF-Sol mit ND/NO-Suspension ⇒Ausfall der ND bei Katalysator-Zugabe (Na₂CO₃)

Lösungsansätze:

- Ultraschalldispergierung (unterschiedl. Parameter)-
- Variation des Zugabezeitpunktes
- saure statt basische Katalyse des Sol-Gel Prozesses mit Essigsäure
- basische Katalyse + bis pH 8 stabile, luftoxidierte Nanodiamant-Suspension

statt <u>Entmischung</u> ⇒ im Sol

visuell <u>homogene</u> Proben

0

starting solution

Lösungsansatz

Kohlenstoff-basierte Komposite

- Luftoxidation bei 425°C für 2h
- pH-Wert-Anpassung auf pH 8.5
- Vermahlung
- ➢ Konzentration 25.9 g/l

D10	D50	D90
[nm]	[nm]	[nm]
4.1	5.9	12.0

UMWELTnanoTECH

Lösungsansatz Projektverbund · Umweltverträgliche Kohlenstoff-basierte Komposite Anwendungen der Nanotechnologie Ansatz A **RF** ohne ND Untersuchung mittels Röntgenkleinwinkelstreuung 100 nm 0000 Steuquerschnitt (cm² g⁻¹) RF ohne ND RF mit 10% ND oben RF mit 10% ND unten 1000 100 **RF 10% ND** 10 100 nm Massenspez. 1 0.1 0.1 q (nm⁻¹)

UMWELTnanoTECH

Lösungsansatz Kohlenstoff-basierte Komposite

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Ansatz A

Problematik:

Proben durch ND-Behandlung jetzt homogen, aber... Zugabe von ND beeinflusst den Sol-Gel-Prozess (starke Zunahme der Partikelgröße)

Vermutung: ND-Oberflächengruppen neutralisieren den Katalysator (Na₂CO₃)

Lösungsansatz:

Stabilisierung der ND in Na₂CO₃-Lösung

Lösungsansatz

Kohlenstoff-basierte Komposite

UMWELTnanoTECH

Lösungsansatz Kohlenstoff-basierte Komposite

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Ansatz A

Einfluss von verschiedenen ND-Lösungen auf die Aerogel-Struktur

Ergebnis:

durch Anpassen der Katalysatorkonzentration kann Zielmatrixstruktur definiert eingestellt werden

Lösungsansatz Kohlenstoff-basierte Komposite

Ansatz A

ND-Nanopartikel im C-Aerogel unter dem REM

200 nm H 100 nm L 14 nm

Fazit Ansatz A:

- makroskopisch homogene ND-Komposite und CNO-Komposite synthetisierbar
- > mikroskopisch sind ND dispergiert auf Matrixoberfläche verteilt
- ➤ max. ND Konzentration / Gesamtmasse: 10 %

UMWELTnanoTECH

Lösungsansatz

Kohlenstoff-basierte Komposite

Ansatz B (Infiltration des RF-Aerogels)

Infiltration einer RF-Scheibe mit ND-Lösung

UMWELTnanoTECH

Lösungsansatz Kohlenstoff-basierte Komposite

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Ansatz B

ND-Nanopartikel im RF-Aerogel unter dem REM

Fazit Ansatz B:

- makroskopisch homogene ND-Komposite synthetisierbar
- keine Beeinflussung der Matrixstruktur aufgrund der Prozessierung
- mikroskopisch liegen ND als Cluster in Matrixporen vor
- ND Konzentration / Gesamtmasse: flexibel durch Mehrfachinfiltration bis einige 10 Gew.% einstellbar

Lösungsansatz

Kohlenstoff-basierte Komposite

Ansatz C (Infiltration des C-Aerogels)

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

ND-Nanopartikel im C-Aerogel mit 250 nm Poren

Aerogel mit ND

reines Aerogel

Beschichtung erkennbar

Lösungsansatz Kohlenstoff-basierte Komposite

Ansatz C

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Nanopartikel im C-Aerogel mit 140 nm Poren

Aerogel mit ND

reines Aerogel

Ausfüllen der Poren erkennbar

Lösungsansatz Kohlenstoff-basierte Komposite Ansatz C Fazit Ansatz C:

wie Ansatz B (Infiltration in RF-Matrix):

homogene ND/NO-Komposite mit ND/NO mikroskopisch als Cluster in Poren; keine Beeinflussung der Matrixstruktur aufgrund der Prozessierung

- Separate Pyrolyse / Temperaturbehandlung von Matrix und ND/NO
- ND Konzentration / Gesamtmasse flexibel einstellbar:

große Matrix-Poren führen zu geringeren ND/NO Konzentrationen bei gleicher Anzahl von Infiltrationszyklen

UMWELTnanoTECH

Elektrochemische Charakterisierung

Kohlenstoff-basierte Komposite

Elektrodenformen: Ansatz A

- Monolithische Elektroden (mechanisch instabil)
- Vliesverstärkte Elektroden:

Homogene und mechanisch stabile Elektroden

UMWELTnanoTECH

EC-Aufbau schematisch

Stromabnehmer Angelegte Zellspannung U Zellstrom Gegen Bezugselektrode Ag/AgCIgemessenes Bezugselektrode Elektrodenpotential F $E = U - U_{ref}$ Arbeitselektrode Ag-Draht Separator NaCI-Lsg Arbeits-Gegenelektrode elektrode Gegenelektrode Elektrolyt Zeolith-Fritte Kollektorbleche Bezugselektrode

UMWELTnanoTECH

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Lade-Entlade- und CV-Kurven

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Kapazität verschiedener Vlieselektroden ohne / mit 1wt% ND

Ansatz A

Im Fehlerrahmen keine Unterschiede in der gravimetrischen Kapazität feststellbar.

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Ansatz C

auf Gesamtmasse normierte Kapazität

ND elektrochemisch aktiv!

Weitere Modifizierung des C-Additivs Nano-Onions

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Weitere Behandlungsoptionen:

- Modifizierung des Graphitisierungsgrades durch Temperatur
- ➤ Umwandlung ND ⇒ Kohlenstoff-Nanozwiebeln (Nano-Onions)
- > Aktivierung mit CO_2 (Zunahme der Oberfläche)

Hochvakuum-Ofen bis 1400 °C

Weitere Modifizierung des C-Additivs

Nano-Onions

UMWELTnanoTECH

Carbon Onions

Herstellung stabiler Kolloide durch Vermahlung

Kohlenstoffnanozwiebeln hergestellt bei 1400 °C

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Funktionalisiert mit Salpetersäure

Vermahlen in der Rührwerkskugelmühle bei 2000 upm über einen Zeitraum von 45 min.

Carbon Onions

Herstellung stabiler Kolloide durch Oxidation

 rch Oxidation
 Projektverbund · Umweltverträgliche

 Anwendungen der Nanotechnologie

Kohlenstoffnanozwiebeln wurden in Salpetersäure bis zu 14 Tage oxidiert, alle 48 Stunden wurde eine Probe genommen.

Verlauf der Partikelgröße über die Zeit.

Nach 6 Tagen liegt die mittlere Teilchengröße unter 100 nm. Durch Zentrifugation (5000 upm) können größere Agglomerate abgetrennt werden, alle Partikel sind kleiner als 100 nm.

UMWELTnanoTECH

Quantifizierung der funktionellen Gruppen

UMWELTnanoTECH

mittels Böhm-Titration

	Phenolgruppen	Lactongruppen	Carboxylgruppen
	[mmol/g]	[mmol/g]	[mmol/g]
Detonationsdiamant	0,043	-	0,221
graphitisierter DND	0,134	-	-
oxidierter	0,083	0,040	0,496
Detonationsdiamant			
graphitisierter und oxidierter DND	0,071	0,019	0,457

Weitere Modifizierung des C-Additivs

Oberflächen-Ozonierung

- Umsetzung mit Ozon zur Entfernung von sp²-Kohlenstoff
- Ausbildung von Defekten (günstig zur Ladungsspeicherung)
- Erzeugung zahlreicher oxidierter Oberflächengruppen zur Verbesserung der Dispergierbarkeit

Ozonierung von Detonationsdiamant

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

30

Röhrenofen mit Ozonisator

Weitere Modifizierung des C-Additivs Oberflächen-Ozonierung

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Ozonierung von graphitisiertem Detonationsdiamant (bucky diamond)

Fazit: Ozonierung ist eine umweltfreundliche und effiziente Methode zur Oxidation von Kohlenstoff-Nanomaterialien

UMWELTnanoTECH

- Verwendung der TPD-MS
 - ⇒ direkte Untersuchung der Desorption funktioneller Gruppen
 - ⇒ qualitative Methode in Ergänzung zu Böhmtitration
- Quantitative Bewertung der Speicherbeiträge durch ND/NO in Proben mit hohem ND/NO-Anteil
 - ⇒ Abschätzung der elektrisch an Matrix angebundenen ND/NO Masse
 - ⇒ Ermittlung der massenspezifischen Speicherkapazität der ND/NO Komponente
- Fertigung des Prototyps einer Speicherzelle
 - ⇒ nach erfolgreichem Abschluss der elektrochemischen Messungen
 - ⇒ verschiedene Konstruktionsansätze verfügbar

- Nanodiamant und Kohlenstoff-Nanozwiebeln können in RF- und C-Komposite in verschiedenen Prozessphasen homogen eingebracht werden
- > Die Kolloidstabilität kann auch in basischen Lösungen realisiert werden
- Hinweis auf massenspezifische Kapazität der ND, die mind. im Bereich des Wertes der Matrixstruktur liegt.
- ➢ Erste Messungen der <u>massenspezifischen</u> elektrochemischen Parameter zeigen noch keine signifikanten Verbesserungen → Anbindung an Komposit? Aggregation?

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Wir danken dem StMUV für die Unterstützung des Projektes

