UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie Abschließende Ergebnisse im Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie

3rd International CongressNext Generation Solar Energy Meets Nanotechnology23 - 25 November 2016, Erlangen

Optimierung der Analytik nanostrukturierter Schichten

Prof. Dr. Günther Benstetter Alexander Hofer, M. Eng.

Technische Hochschule Deggendorf

finanziert durch Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Fakultät EMI

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- Thermische und elektrische Eigenschaften nanostrukturierter Schichten?
- Ziel: Hochauflösende Charakterisierung von Materialparametern
- Methoden der Raster-Sonden-Mikroskopie (RKM), Messplatz zur Bestimmung der thermischen Leitfähigkeit und Raster-Elektronen-Mikroskopie (REM)

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Kombination von Analyseverfahren

ortsaufgelöste simultane Bestimmung der elektrischen Leitfähigkeit und der Topographie

ortsaufgelöste Ermittlung thermischer Materialeigenschaften

Bestimmung der Mikrostruktur

Bestimmung der thermischen Leitfähigkeit von makroskopischen Dünnschichten Unterstützende Begleitung der Entwicklung und Fertigung nanostrukturierter Schichtsysteme für Thermogeneratoren

Überblick

Verwendete Methoden

<u>Scanning Transmission</u> <u>Electron Microscopy</u> ≻Nanopartikel Charakterisierung

<u>Electron Back</u> <u>Scatter Diffraction</u> ≻Gefügestruktur

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

<u>Scanning Probe</u> <u>Microscopy</u> ≻Topographie und elektrische Leitfähigkeit

Bestimmung der Nanopartikelgrößen

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

STEM Aufnahme (Dunkelfeld)

- Nanopartikel auf TEM Gitter
- Partikel Größe ist 16 +/- 2 nm

Topographie im intermittierenden Kontaktmodus

- Nanopartikel auf Saphirsubstrat
- Partikel Größe ist 20 +/- 2 nm
- Größere Partikel und Agglomerate erkennbar

Artefakte

UMWELTnanoTECH

Laser-induzierter Photostrom

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Bei CAFM entstehen reproduzierbar messbare Ströme ohne angelegtes Potential

Messprozedur: Aufnahme der CAFM Mappings bei verschiedenen Beleuchtungsstärken 0...100% und bei deaktivierten Laser (Dark-Lift Modus)

Spitzenevaluierung Beschichtung mit Graphen

Benutzte Volldiamantspitze

Neue Ptlrbeschichte Spitze

Ptlr-Spitze direkt nach der Beschichtung mit Graphen

Graphen beschichtete Ptlr-Spitze nach 42 Scans

UMWELTnanoTECH

Projektverbund · Umweltverträgliche

300 nA 0 nA

12^{er} Scan

Spitzenevaluierung

UMWELTnanoTECH

Graphen beschichtete Spitze und Diamantspitze

Volldiamantspitze

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- Beschichtung kann zu Artefakten führen
- Erhöhte Widerstandsfähigkeit gegen Abnutzung
- Beschichtung mit Graphen führt zu keiner merkbaren Erhöhung des Spitzenradius
- Erhöhte laterale Auflösung

RKM-basierte Charakterisierung

UMWELTnanoTECH

2D-Stromverteilung

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

2D-Stromverteilung ist dominiert von Verschleiß

Niedrige Kraft	Nanopartikel	normal
Hohe Kraft	Mesoskopische Mäanderstruktur	Sehr hoch

RKM-basierte Charakterisierung

Elektrische Leitfähigkeit

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Bestimmung der elektrischen Leitfähigkeit

- Quantitativ vergleichbar mit makroskopischen Messungen
- starke Schwankungen auf Mikro- und Nanometerskala
- Starker Einfluss der Strukturgröße auf die elektrische Leitfähigkeit

REM-basierte Charakterisierung

Kornanalyse mit EBSD

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

- Durch die Nanostruktur ergeben sich viele Bereiche, denen keine eindeutige Orientierung zugewiesen werden kann
 - o Bedingt durch die Mäanderstruktur
 - Überlagerung mehrerer Kikuchi-Muster
- Korngrößen sind nicht von der verwendeten Laserenergie beim Sintern abhängig

UMWELTnanoTECH

Projektverbund · Umweltverträgliche Anwendungen der Nanotechnologie

Raster-Sonden-Mikroskopie

- Graphen beschichtete Spitzen als Alternative für Diamantspitzen
- Erfolgreiche Bestimmung der quantitativen elektrischen Leitfähigkeit
- starke Schwankungen auf Mikro- und Nanometerskala
- Starker Einfluss der Strukturgröße auf die elektrische Leitfähigkeit

Raster-Elektronen-Mikroskopie

- Bestimmung der Struktur von Nanopartikelschichten möglich
- Korngrößen sind weitgehend unabhängig von der mesoskopischen Struktur des Gefüges
- Untersuchung der Nanostruktur sowie der Kristallorientierung in ursprünglich von der Oberfläche entfernten Bereichen